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Abstract 

A topology on the spectrum of a locally coherent Grothendieck category is introduced. The 
closed subsets are related to certain localizing subcategories which are characterized in terms of 
Serre subcategories of the full subcategory of finitely presented objects. 
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0. Introduction 

A Grothendieck category cc4 is said to be locally coherent provided that .d has a 

generating set of finitely presented objects and the full subcategory fp(d) of finitely 

presented objects in ~2 is abelian. The spectrum sp(&) of d is the set of isomorphism 

classes of indecomposable injective objects in d. We show that this set carries a 

natural topology and it is the purpose of this paper to establish a natural and bijective 

correspondence between the following structures which arise for each locally coherent 

category .d: 

- Serre subcategories of fp(&), 

- hereditary torsion theories of finite type for LZZ, 

- closed subsets of sp(&). 

This analysis is motivated by some construction which reduces the theory of purity 

for a locally finitely presented category with products to the study of injectives in a 

locally coherent category (e.g. [3]). Model theory of modules is a classical example 

of this theory. For instance, given a ring A the category (mod(A”P), Ab) of additive 
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functors from the category of finitely presented A”P-modules to the category of abelian 

groups is locally coherent, and the functor 

Mod(A) + (mod(AoP),Ab), M H A4 @A - 

identifies the pure-injective A-modules with the injective objects of (mod(A”P), Ab). 

Central parts of this paper were presented at a workshop in Bielefeld in November 

1993 which was devoted to connections between model theory and representation theory 

of finite dimensional algebras. I wish to thank all participants for exciting discussions 

and encouragement. In particular I would like to mention I. Herzog and M. Prest. 

Finally, I should refer to a recent paper of I. Herzog [5] which also discusses locally 

coherent categories. 

1. Locally finitely presented abelian categories 

We recall some terminology and some well-known facts about locally finitely pre- 

sented categories and Grothendieck categories. Let d be an additive category with 

direct limits. An object X E d is finitely presented provided that Hom(X, ) commutes 

with direct limits and we denote by fp(d) the full subcategory of finitely presented 

objects in d. The category & is said to be locally finitely presented if the isomor- 

phism classes of fp(iae) form a set and every object in & is a direct limit of objects 

in fp(&). An abelian category & is locally finitely presented if and only if it is a 

Grothendieck category with a generating set of finitely presented objects [l, Satz 1.5; 

2, 2.41. 

Fix now a locally finitely presented abelian category d. An object in d is finitely 
generated if it is a quotient of some finitely presented object and it is easily seen that 

any object in d is a direct limit of finitely generated subobjects. In particular, one has 

the following lemma. 

Lemma 1.1. An object X E d is finitely generated ifSfor any epimorphism cp : Y + X 
there is a finitely generated subobject U of Y such that cp( U) = X. 

Proof. Straightforward. 0 

The category & is completely determined by fp(&). In fact, fp(&) is additive, has 

cokemels and the functor 

d + Lex(fp(d)OP,Ab), X H Hom( ,X)Jfp(dj 

from d into the category of additive left exact functors from fp(d)“P to Ab is an 

equivalence [l, Satz 2.41. Given a full additive subcategory %’ of fp(d) we denote by 

@ the full subcategory of d which consists of direct limits QX; with X, E %’ for all 

i. Note that this subcategory is closed under direct limits in d and that the finitely pre- 

sented objects in ‘: are precisely the direct summands of objects in V [2, Theorem 4.11. 
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Finally, we recall that J$ is locally coherent provided that finitely generated subobjects 

of finitely presented objects are finitely presented, equivalently if fp(Lc4) is abelian 

[5, Proposition 2.21. 

2. Torsion theories and localization 

In this section we discuss certain localizing subcategories which arise naturally for 

any locally coherent category. We begin with some definitions. Let d be an abelian 

category. A pair (y-, 9) of full subcategories of d is said to be a torsion theory for 

~2 provided that 

(1) Hom(y,p) = 0; 

(2) Hom(y,X) = 0 implies X E 9 for all X E d; 

(3) Hom(X,p) = 0 implies X E y for all X E &; 

(4) for all X E d there exists a subobject Y CX such that Y E r and X/Y E F. 

We denote by t: d -+ F the functor which assigns to X E d the largest subobject 

t(X) of X belonging to y. A torsion theory (y-, 9) is called hereditary if y is closed 

under subobjects, equivalently if t is left exact. A full subcategory %? of d is called 

a Serre subcategory provided that for every exact sequence 0 -+ X --+ Y + Z + 0 in 

.d the object Y is in V iff both X and Z are in 97. 

We fix a Serre subcategory 5%’ of &. The quotient category d/+7 of & relative to 

G? is defined as follows. The objects of &‘/U are those of d and Horn&,@, Y) = 

aHom,d(X’, Y/Y’) with X’ C_X, Y’ z Y and X/X’, Y’ E V. Again &01/U is abelian 

and the canonical quotient fun&or q: &’ + &‘/%’ with q(X) = X is exact. A Serre 

subcategory 59 is called localizing provided that q admits a right adjoint s: &ozj%? -+ .d 

which is called section functor. The adjointness gives a natural morphism (x:X + 

soq(X) for each X E d with Ker(&), Coker(&) E %, and Ker(tx) is the maximal 

subobject of X which belongs to %?. An object X E d is said to be g-closed (V- 

torsionfree) provided that 5~ is an isomorphism (a monomorphism). Thus the section 

mnctor induces an equivalence between dfV and the full subcategory of V-closed ob- 

jects in d. The following lemma collects some well-known facts about the connection 

between localizing subcategories and torsion theories. 

Lemma 2.1. Let d be an abelian category and G9 a Serre subcategory of J$. Con- 
sider the following conditions: 

(1) (V, {X E &’ 1 Hom(V,X) = 0}) is a hereditary torsion theory. 
(2) The inclusion 5~7 -+ ._& admits a right adjoint t: & + %?. 
(3) Q? is a localizing subcategory. 

Then ( 1) and (2) are equivalent and (3) implies (2). Zf d has injective envelopes, 
then also (2) implies (3). 

Proof. (1) + (2): Take for t: d --+ 59 the functor which assigns to X E ~2 the largest 
subobject t(X) of X belonging to w. 

(2) + (1): The right adjoint t: d + %? induces a morphism 5~: t(X) --f X for 

every X E d which is a monomorphism since 97 is closed under quotients. It is easily 
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checked that Hom(V,Coker(<x)) = 0, and it follows that (%?, {X E d 1 Hom(%?,X) = 

0)) is a hereditary torsion theory. 

(2) + (3) follows from [3, 111.3, Corollaire 11. 

(3) + (2): Let s be a right adjoint of the quotient functor q: d + d/%7. Take for 

t: d -+ 9T the functor which assigns to X E ~2 the kernel of the canonical morphism 

(x:X + soq(X). 0 

Given a collection V of objects in an abelian category &‘, recall that the right 

perpendicular category %‘l of %? is the full subcategory of all objects M E &’ satisfying 

Hom(X,M) = 0 and Ext’(X,M) = 0 for all X E %?. 

Lemma 2.2. Zf %? is a localizing subcategory, then the section finctor induces an 

equivalence between d/%7 and %l. 

Proof. The right perpendicular category %?l coincides with the full subcategory of 

%?-closed objects since a %?-torsionfree object X E S? is %‘-closed iff Ext’(%?,X) = 0 

[3, 111.2, Lemme 11. q 

Let JZZ be an abelian category and (F-,9) a torsion theory for d. If ~2 has direct 

limits, then the isomorphism Hom(%Xi, Y) S &Hom(&, Y) shows that F is closed 

under direct limits in d. A torsion theory is said to be offinite type provided that the 

corresponding right adjoint t of the inclusion F + J$’ commutes with direct limits. If 

direct limits in lc4 are exact, then (F,F) is of finite type iff F is closed under direct 

limits. 

Lemma 2.3. Let & be a locally coherent category. Suppose that the pair (F,F) is 

a hereditary torsion theory of finite type for &‘. Then Y = F f? fp(Oe) is a Serre 

subcategory of fp(&) with F = @ and 9 = {X E ,d 1 Hom(Y,X) = O}. 

Proof. We have $ c F since F is closed under direct limits. Now let X E F and 

write X = 3X, as direct limit of finitely presented objects. We have t(Y) E $ for 

all Y E fp(&‘) since t(Y) can be written as direct limit of finitely generated subobjects 

which belong to Y. Thus X = t(X) 2 %t(Xi) E G since G is closed under direct 

limits and the equality F = G is shown. It is clear that F G{X E d 1 Hom(Y,X) = 

O}. On the other hand, Hom(Y,X) = 0 implies Hom( Y’,X) = 0 and therefore X E 9 

since F = 9. This completes the proof. 0 

Lemma 2.4. Let GI be an abelian category with exact direct limits and suppose that 

%? is a localizing subcategory of AI. Then V and 41% have direct limits. Consider 

the following conditions: 

(1) t commutes with direct limits. 

(2) s commutes with direct limits. 

Then (2) implies (1) and if & is locally coherent, then also (1) implies (2). 
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Proof. Direct limits exist in % since % is closed under direct limits taken in &. For 

a direct limit &Xi in &/%’ take q(Qs(Xi)). 

(2) + (1): We use the natural exact sequence 0 + t(X) --+ X -% soq(X) which 

is given for each X E d. By assumption s commutes with direct limits and therefore 

also soq since q is a left adjoint. From the exactness of direct limits in d we obtain 

therefore an isomorphism Qt(Xi) g t(&Xi) for each direct limit &Xi in d. 

(1) + (2): Using the adjointness we have for a direct limit I&Xi in d/V the 

isomorphism %Xi 2 Qqos(Xi) % q(%s(Xi)). Therefore it suffices to show that 

%s(Xi) is %7-closed. We have t(&s(Xi)) ” atos(X,) = 0 since t commutes with 

direct limits. Thus ramp(x) induces an exact sequence 0 --+ %S(Xi) + soq( %s(Xi)) -+ 

C + 0 for some C E %?:. We need to show that C = 0. Therefore assume C # 0. We 

can choose a non-zero morphism Z 4CforsomeZEY=@flfp(d)sinceQ?= G 

by Lemma 2.3. This morphism induces an exact sequence 0 -+ Qs(Xi) + Y + Z + 

0 and we obtain from Lemma 1.1 a morphism V --+ Y with V E fp(&) which gives 

the following commutative diagram with exact rows: 

o-u-v-z-o 

The object U is finitely presented since fp(&) is abelian and therefore U + %s(X,) 

factorizes as U s s(Xi) + Qs(Xi) for some j. The morphism cp induces an element 

in Ext’(Z,s(Xj)) which is zero since Ext’(%‘,X) = 0 for all V-closed objects X E d 

[3, 111.2, Lemme 11. Thus 0 + &s(X~) -+ Y + Z + 0 splits and therefore the 

morphism Z + C is zero since Hom(Z,soq(lims(Xi))) = 0. This contradiction finishes 

the proof. 0 

Lemma 2.5. Let f: d + 93 be a finctor between categories with direct limits. Sup- 

pose there exists a right adjoint g which commutes with direct limits. Then f(X) is 

finitely presented, if X is a finitely presented object in d. 

Proof. Let X E A? and %K E g. We have the following sequence of morphisms 

lim_Hom(f‘(X), Yi) S’ lim_Hom(X, g( K)) 

s Hom(X, lhg( Yi)) ” Hom(X, g(l& Yi)) F Hom(f(X), l& Yi) 

since f and g is a pair of adjoint hmctors and g commutes with direct limits. Now 

the assertion follows since cp is an isomorphism if X is finitely presented. 0 

We say that a localizing subcategory g of an abelian category d with direct limits is 

ofJinite type if the right adjoint t: d + %? of the inclusion commutes with direct limits. 
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The next result summarizes our discusssion and it shows that this type of localizing 

subcategories is most natural for locally coherent categories. 

Theorem 2.6. Let S! be a locally coherent category and suppose that Q? is a Serre 

subcategory of d. Then the following are equivalent: 
(1) The inclusion functor %? + Jai admits a right adjoint t: ~2 + Q?. 
(2) The quotient functor q: d + d/V admits a right adjoint s: d/V + d. 

If the above conditions (1) and (2) are satisfied, then the following are equivalent: 
(3) t commutes with direct limits. 
(4) s commutes with direct limits. 

If the above conditions (l)-(4) are satisfied, then V and d/V are locally coherent 
and the following diagram of functors commutes where the unlabeled functors are 

inclusions: 

Moreover, there is a unique functor f: fp(d)/ fp(W) -+ fp(d/g) such that fp(q) = 

fop, where p: fp(d) + fp(&)/ fp(%?) denotes the quotient functor. The functor f is 
an equivalence. 

Proof. The equivalence (1) e (2) follows from Lemma 2.1 and (3) H (4) from 

Lemma 2.4. Now suppose (l)-(4). It follows from Lemma 2.1 and Lemma 2.3 that 

%? is locally coherent. To show that &/%? is locally coherent first observe that &‘I% 

has direct limits by Lemma 2.4. Moreover, q sends finitely presented objects to finitely 

presented objects by Lemma 2.5 since s is a right adjoint of q commuting with direct 

limits. Furthermore, any object X in &‘/V can be written as a direct limit X = q(X) = 
Qq(Xi) of objects in q(fp(&)). Thus d/V is locally finitely presented and the com- 

mutativity of the diagram is also shown. It remains to check that there exists a canonical 

equivalence between fp(d)/fp(%‘) and fp(d/V). In particular this would imply that 

&4/W is locally coherent since fp(d)/ fp(W) is abelian. The existence of a unique 

functor f: fp(d)/ fp(W) --+ fp(d/V) such that fp(q) = fop follows from the universal 

property of the quotient functor p: fp(&) + fp(&)/ fp(%?) [3, 111.1, Corollaire 21 since 

$(q)(X) = 0 for all X E fp(V). In fact f is induced from the canonical morphism 

Homfr(.ol)/fr(V)(X, Y) = QHomfr+&“, Y/Y”) 

+ &Horn&(X’, Y/Y’) = Horn&#, Y) 

for objects X, Y E fp(&)/fp(%?) with X’,X” CX, Y’, Y” G Y, X/X”, Y” E fp(%) and 

X/X’, Y’ E W. This is an isomorphism since for each pair X’ CX, Y’ C Y in d with 

X/X’, Y’ E %? there exists a subobject X” LX in fp(&) with X/X” E fp(%) such 

that 1” CX’. Furthermore, one uses that Hom(X”, Y/Y’) g aHom(X”, Y/Y”) where 

Y” C Y’ with Y” E fp(‘S). Thus the functor f is fully faithful. Finally, f is also dense 
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since any object in fp(d/%) is a direct limit of objects in the image off and therefore 

a direct summand of some object in the image of f. This completes the proof, 0 

Having shown that any finite type localizing subcategory of a locally coherent cat- 

egory & is of the form $ for some Serre subcategory of fp(d) it is natural to ask 

whether the converse is true. We shall need the following lemma. 

Lemma 2.7. Let d and /?8 be a pair of locally coherent categories. Any functor 

f: fp(yc4) + fp(B) extends, up to isomorphism, uniquely to a functor f *: .d + &’ 

which commutes with direct limits. This functor has the following properties: 

(1) f is exact iff f * is exact. 

(2) f is right exact iff f * has a right adjoint f *: 99 + d. A right adjoint 

commutes with direct limits. 
off” 

(3) If f exact, then f is faithful ifs f + is faithful. 

Proof. We shall identify d = Lex(fp(&‘yP,Ab) and G9 = Lex(fp(g)OP, Ab). The 

functor f induces the functor 

f *: (fp(Wop, Ab) + (fp(Wop, Ab), XHX0J 

and this has a left adjoint f * : (fp(&)“P,Ab) --+ (fp(B)“r, Ab) which is determined 

by the fact that it sends Hom( ,X) to Hom( , f (X)) and preserves coproducts and 

cokernels. Therefore f * induces the following commutative diagram where the vertical 

arrows represent inclusions, since the objects in Lex(fp(&>“P,Ab) are precisely the 

direct limits %Hom( ,Xi) of representable hmctors: 

fP(Jo 
f 

’ fP(W 

I 1 
Lex(fp(d)OP,Ab) - Lex( fp(9J)op, Ab) 

(fp(&‘yP,Ab) f’(fp(l)OP,Ab) 

(1) Any exact sequence 0 + X --f Y -+ Z -+ 0 in & can be written as a direct 

limit of exact sequences 0 -+ Xi + Yi + Z, + 0 in fp(d). The assertion follows from 

this fact since f * commutes with direct limits which are exact. 

(2) If f is right exact, then the functor Lex(fp(B’)“P,Ab) --+ Lex(fp(&‘)op,Ab), X H 

Xof is a right adjoint for f *. Conversely, the existence of a right adjoint implies that 

,f” is right exact. Thus f is right exact. 

(3) Suppose that f is faithful. To show that f * is faithful assume that f ‘(rp) = 0 

for some morphism cp # 0. It follows that f *(Im(cp)) = 0 and therefore f *(X/U) = 0 

for some X E fp(&) and some proper subobject U. Writing (I = C Ui as the sum 

of finitely generated subobjects we obtain C f (Ui) = f*(U) = f*(X) = f(X) and 

therefore f (Uj) = f(X) for some j since f(X) is finitely generated. Thus Uj = X 

since f is faithful. Contradiction. 0 
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Theorem 2.8. Let d be a locally coherent category and suppose that Y 

subcategory of fp(d). Then 9 is a localizing subcategory of jinite type 

-4 

is a Serre 

of 22. 

Proof. The category Y is locally coherent since fp( Y ) = 9’ and therefore the in- 

clusion $ 4 d admits a right adjoint commuting with direct limits by Lemma 2.7. 

We conclude from Lemma 2.1 that ? is a localizing subcategory of finite type iff 

$ is a Serre subcategory of &. Thus it remains to show that $ is a Serre subcat- 

egory. To this end consider the quotient functor q: fp(d) -+ fp(&‘)/y which induces 

an exact functor q*: d -+ 93 for 99 = Lex((fp(&‘)/,4”>“P,Ab) by Lemma 2.7. The 

kernel Ker(q*) is a Serre subcategory of d and we claim that G = Ker(q*). Clearly, 

$ C Ker(q*) since q* commutes with direct limits. To check the converse we use the 

following criterion. An object X E d belongs to @ iff any morphism Y + X with 

Y E fp(&) factors through some object in 9 [3, Lemma 4.11. Now let cp: Y --f X 

be such a morphism with X E Ker(q*). Write X = &Xi with canonical morphisms 

Bi: Xi + X and Xi E fp(&) for all i. We obtain 

0 = q*(q) E Hom(q*(Y),q*(X)) E QHom(q(Y),q(Xi)) 

and it follows directly that there is some j and some morphism c(: Y --f Xj such that 

cp = QjoCr and q(u) = 0. Thus Im(a) E Y and therefore cp factors through some object 

in Y. This finishes the proof. 0 

Some consequences are as follows. 

Corollary 2.9. Let f: d --) B be an exact finctor between locally coherent cate- 
gories and suppose that f preserves direct limits and$nitely presented objects. If 9 = 

Ker(f)flfp(&‘), then Ker(f) = 9’ and this is a localizing subcategory offinite type. 

Proof. The subcategory G is localizing of finite type by the preceding theorem and 

the argument used in its proof shows that Ker(f) = @ since Y is the kernel of the 

restricted functor fp(d) 4 fp(B). 0 

Corollary 2.10. Let A? be a locally coherent category. There is a bijective correspon- 
dence between Serre subcategories of fp(&) and hereditary torsion theories of jinite 
type for &. The correspondence is given by 

Y H ($,{X E d 1 Hom(Y,X) = 0)) and (S,F) H F n fp(d). 

Proof. Combine Lemma 2.3 and Theorem 2.8. 0 

Corollary 2.11. Let & be a locally coherent category. If Y is a Serre subcategory 
of fp(d), then the right perpendicular category Yl of Y in AZZ is locally coherent 
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and coincides with ( G)‘. In particular the section functor ~41; + & induces an 

equivalence between d/G and Yl. 

Proof. It @ices to show that an object in d bel2ngs to 9” iff it is G-closed, 

since the Y-closed objects are precisely those of ( Y )I by Lemma 2.2. The rest of 

the assertion then follows from Theorem 2.6. Clearly, any ?-closed object belongs 

to @. To verify the converse denote by q: d + d/g the quotient functor and let 

s be a right adjoint. Let X E Yl. It follows immediately that Hom( @,X) = 0 and 

we obtain therefore the canonical exact sequence 0 -+ X % soq(X) + C + 0 with 

C E ,v’. We need to show that C = 0. Write C = Iir~c, with C; E Y for all i. Each 

canonical morphism cp;: C, -+ C factors through soq(X) since Ext’(Y,X) = 0, and 

therefore cpi = 0 for all i since Hom(Y,soq(X)) = 0. Thus C = 0 and X is G-closed. 

c 

We finish this section with an example of a localizing subcategory of finite type. 

To this end let ,02 be a locally finitely presented abelian category and let &? = 

(fp(dyp> Ab). 

Proposition 2.12. There exists a finite type localizing subcategory 97 of 28 such that 
the composition of d + a, X H Hom( ,X)lrr,(d) with the quotient functor Z+? + 
.9/V is an equivalence. The category & is locally coherent tf and only tfS9 is locally 
coherent, equivalently if fp(&) has pseudo-kernels. 

Proof. Recall that cp: X + Y is a pseudo-kernel for rl/: Y + Z if the induced sequence 
of mnctors Hom( ,X) + Hom( , Y) 4 Hom( ,Z) is exact. The first part of the 

assertion is well known (e.g. [1, Satz 2.71). The fact that 9? is of finite type follows 

from Lemma 2.4 since the functor & + &? commutes with direct limits. If g is 

locally coherent, then d is locally coherent by Theorem 2.6. The converse follows 

from the well-known fact that for any skeletally small additive category 9 the category 

fp(PP, Ab) is abelian iff 9 has pseudo-kernels [ 1, p. 3 151. 0 

3. The spectrum 

Let & be a Grothendieck category with a generating set % of objects. Recall that 

the isomorphism classes of indecomposable injective objects in & form a set since any 

indecomposable injective object in &’ occurs as the injective envelope of some quotient 

X/U with X E 9. We denote by sp(&) the set of isomorphism classes of indecompos- 

able injective objects in &’ and call sp(&) the spectrum of J&. It will be convenient 

to identify each isomorphism class in sp(&) with a representative belonging to it. 

Lemma 3.1. Let ~2 be a locally finitely presented Grothendieck category and let 
lJ=n MEsp(,djM. Any object X E ~2 embeds in some product of copies of U. 
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Proof. First observe that Hom(X, U) # 0 for every finitely generated object X # 0 

since there exists a maximal subobject Y CX so that an injective envelope X/Y + M 

provides a non-zero morphism X + M with M E sp(yc4). Given an arbitrary object 

X9 let 6:X A rIrpE&rn(X,U) U be the map defined by 6, = cp for all cp E Hom(X, U). 

We claim that Ker(G) = 0. To show this assume that Ker(G) # 0 and choose a finitely 

generated non-zero object X’ & Ker(G). There is a non-zero morphism X’ + U which 

extends to a non-zero morphism cp:X 4 U. But cp factors through 6 and therefore 

cp(X’) = 0. This contradiction finishes the proof. 0 

Let d be a Grothendieck category and %? a localizing subcategory of &. It is well 

known that V and d/V? are also Grothendieck categories [3, 111.4, Proposition 91. 

Denote by s the section functor d/Q? + d and for each object X E & let E(X) 

be its injective envelope in d. The assignment X H E(X) induces an injective map 

sp(V) + sp(&‘) and X H s(X) induces an injective map sp(Lpe/V) -+ sp(d). We 

consider both maps as identification. They satisfy sp(&) = sp(%?) U sp(&/%?) and 

sp(%?) n sp(&/V) = 0 [3, 111.3, Corollaire 21. 

Proposition 3.2. Let & be a Grothendieck category and (F-,9) be a hereditary 
torsion theory for &. If s~/F is locally finitely presented, then & = .F n sp(&) = 

sp(&/%?) cogenerates (F,8) in the following sense: 
(1) X E 5 ifs X embeds in some product of copies of U = nMEOti M. 
(2) X E F ifs Hom(X, ai) = 0. 

Proof. ( 1) We use the fact that the left exact functor s induces an equivalence between 

the full subcategory of injective objects inj(&‘/%?) and inj(&‘) n 9. Given X E B let 

X + M be an injective envelope. It is clear that M E 9. Using Lemma 3.1 we find 

a monomorphism q(M) + &_, q(U) f or some set I. The composition X -+ M --+ 
ni,_, U gives the desired monomorphism. For the converse use that 9 is closed under 

products and subobjects. 

(2) Given X E y-, clearly Hom(X,%) = 0. For the converse suppose that X 6 y. 

By definition there is a non-zero morphism cp:X + Y for some Y E y. Using part 

(1) it follows that Hom(X, a) # 0 and the proof is finished. 0 

4. A topology for the spectrum 

In [7] Ziegler introduces a topology on the isomorphism classes of indecomposable 

pure injective A-modules for a ring A. We extend this concept of a topology on 

sp(mod(A,“P),Ab) to the spectrum of an arbitrary locally coherent category. Note that 

this is independent from all previous results in this paper. 

Let &’ be a locally coherent category. For a subset @ of sp(&) denote by C(q) the 

Serre subcategory of fp(yQI) formed by the objects X E fp(d) satisfying Hom(X, a) = 

0. For a subcategory Y of fp(&) let r(g) = {M E sp(&) 1 Hom(Y,M) = 0). 
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Lemma 4.1. The assignment 

42 H 42 = T&(42) 

is a closure operator on the spectrum sp(d) of d, i.e. the subsets % C sp(&‘) satis- 

,fying 42 = 42 form the closed sets of a topology on sp(.d). 

Proof. Following Kuratowski’s axiomatization of a topological space we need to verify 

that 

(i) S = 0; 
(ii) %!/ C: 022 for every subset $2; 

(iii) 5 = 42 for every subset 42; 
~-- 

(iv) @i U O&z = 421 U 42~ for every pair of subsets %i and %2. 

The conditions (i)-(iii) are easily checked and it remains to show (iv). From C(%i u 
42) C C(%,) n C(%,) it follows that ‘$2, U %2~ 2 @I U ui%~. Now choose M E sp(&‘) -_ 
such that M $2 @I U%l. We claim that this implies M $ %i U 422. From the definitions 

we may choose non-zero morphisms cpi:X, -+ M such that Xi E C(%i). We have 

Im(cpi ) rl Im(cpl) # 0 since A4 is indecomposable injective. Choosing U C Im(cpl ) n 

Im(qnz) finitely generated one uses Lemma 1.1 to find finitely generated subobjects 

Y, CXi such that cpi(F) = U. We obtain the following exact commutative diagram 

where the vertical morphisms are the canonical monomorphisms: 

The morphisms $i being epimorphisms we find finitely generated subobjects Wi of W 

such that $i/i( Wi) = K. Let X = Yi u Yz/ [ $11 ( WI + W,). We have X E fp(&‘) since 

fp(d) is abelian and it is easily checked that Hom(X,M) # 0. On the other hand, 

X E X(%2, U 422) since X is a quotient of each K. Therefore A4 6 %I U %z and the 

proof is complete. 0 

It has been observed by I. Herzog and M. Prest that Ziegler’s closed sets in 

sp(mod(A”P), Ab) are in bijective correspondence to Serre subcategories of 

fp(mod(A’p),Ab). In our context this observation takes the following form. 

Theorem 4.2. Let & be a locally coherent category. There is a bijective inclusion 

reversing correspondence between Serre subcategories of fp(Se) and closed subsets of 

sp(.d). The correspondence is given by 

9’ H T(Y) and % H C(%). 

Proof. We check that the assignments are inverse to each other. Given a Serre subcat- 

egory Y of fp(&), the pair (F,p) with F = $ and 9 = {X 1 Hom(Y,X) = 0) 



270 H. Krause i Journal of Pure and Applied Algebra 114 (1997) 259-271 

forms a hereditary torsion theory of finite type by Corollary 2.10. Thus d/S is locally 

finitely presented by Theorem 2.6 and it follows from Proposition 3.2 that CO r(Y) = 

Y since r(Y) = Fnsp(d). In particular this shows that r(Y) is closed. Conversely, 

rZ(%!) = % is clear since % is closed. 0 

Corollary 4.3. Let d be a locally coherent category. There is a bijective correspon- 
dence between closed subsets of sp(&) and hereditary torsion theories of Jinite type 
for ic4 given by 

a +-+ <IX I HomKW = 01, {X I XC II,< &,EQW for somel}) 

(9-, F) H sp(&) n 9. 

Proof. Combine Corollary 2.10 and Theorem 4.2. 0 

Let ‘8 be a finite type localizing subcategory of d. Then it is shown in Theo- 

rem 2.6 that 59 and &c4/%? are locally coherent and it is therefore natural to ask how 

the topologies of sp(%Y) and sp(&‘/%?) are related to that of sp(d). 

Corollary 4.4. The topologies of sp(W) and sp(~~?/%?) coincide with their topologies 
induced from sp(d). 

Proof. Viewing sp(%‘) and sp(&‘/%?) in the natural way as subsets of sp(&) the as- 

sertion follows from Theorem 4.2. 0 

Recall that a topological space % is quasi-compact provided that for every family 

(@i )iEI of open subsets 95’ = UiG1 %i implies X = lJiEJ %i for some finite subset J 

of I. A subset of X is quasi-compact if it is quasi-compact with respect to the induced 

topology. 

Rephrasing Theorem 4.2 the assignment 9’ H {M E sp(d) / Hom(Y,P,M) # 0) 

gives a bijective correspondence between Serre subcategories of fp(d) and open sub- 

sets of sp(.&). Note that for every subcategory %? of fp(&) one has (A4 E sp(&) 1 

Hom(q,M) # 0) = {M E sp(&) 1 Hom(Y,M) # 0) where Y denotes the 

smallest Serre subcategory of fp(&) containing 59. This has the following 

consequence. 

Corollary 4.5. Any open subset %! of sp(d) is of the form {M E sp(&) 1 Hom(Y,M) 

# 0) for some Serre subcategory Y of fp(cc4). For such an open set ?Z! the following 
are equivalent: 

(1) @ is quasi-compact. 
(2) % = (A4 E sp(&) 1 Hom(X,M) # 0) for some X E Y. 
(3) 9 is the smallest Serre subcategory containing X for some X E 9. 
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Writing (X) = {M E sp(&) 1 Hom(X,M) # 0) for each X E fp(&) we obtain a 

basis of open sets as follows. 

Corollary 4.6. The fumily of all subsets of the form (X) for some X E fp(d) forms 

u basis ?f quasi-compact open sets for the topology on sp(&). 

We conclude this paper with two examples. Let +9 be a skeletally small additive 

category and suppose that the category (%?,Ab) of additive functors from V to Ab 

is locally coherent. The following proposition is an immediate consequence of the 

preceding result and Yoneda’s lemma. 

Proposition 4.7. The spectrum of (%?,Ab) is quasi-compact if and only if there exists 

an object X E W such that M(X) # 0 for all A4 E sp(%?,Ab). 

Let .d be a skeletally small abelian category. The Serre subcategories of d form 

a small partially ordered set which we denote by -~P(JzZ). If (%i)icl is a family in 

5?(&), then their intersection ni,, %‘i is again a Serre subcategory and one obtains 

lJIEI (8; as the intersection of all %7 E 9(Se) with %?i C %? for all i E I. Now observe 

that Lex(&“P,Ab) is a locally coherent category. It follows from Theorem 4.2 that the 

assignment 

% H {M E sp(Lex(&‘P,Ab)) 1 M(g) # 0} 

gives a lattice isomorphism between _CZ(&) and the lattice of open subsets of 

sp(Lex(#‘P, Ab)). 

Proposition 4.8. T(d) is isomorphic to the lattice of open subsets of some topolog- 

ical space. 
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